太阳能胶体蓄电池2V3000AH通信光伏储能

  • 品    牌:太阳能蓄电池
  • 型    号:2V3000AH
  • 货    号:1121
  • 更新日期:2024-07-27
分辨率: 太阳能储能蓄电池 重量: 见合格证 品牌: 太阳能蓄电池
货号: 1121 电源电压: 12V 型号: 2V3000AH
测量范围: 免维护蓄电池 规格: 2V3000AH 加工定制:
外形尺寸: 标准 测量精度: 毫米


太阳能胶体蓄电池2V3000AH通信光伏储能

产品优点:

1、  免补水、维护简单
采用特殊设计克服了电池在充电过程中电解失水的现象,电池在使用过程中电液体积和比重几乎没有变化,因此电池在使用寿命期间完全无需补水,维护简单。2、  密封安全、安装简单
电池内没有流动的电液,电池立式、侧卧安装使用均可,无电液渗漏之患,而且在正常充电过程中电池不会产生酸雾。因此可将电池安装在办公室或配套设备房内,而无需另建专用电池房,降低工程造价。
3、  使用寿命长
采用了耐腐性良好的铅板栅,在25的环境温度下,正常浮充寿命可达10年以上。
4、  高功率放电性能好
采用了内阻值很小的 极板和玻纤隔板,而且装配较紧,使得电池内阻极小。在-4060温度范围内进行大电流放电,其输出功率比常规电池可高出15左右。
5、  安装使用方便
电池出厂时已经完全充电,用户拿到电池后即可安装投入使用。

⑴ 电话交换机            ⑺ 办公自动化系统
⑵ 电器设备、设备及仪器仪表 ⑻ 无线电通讯系统
⑶ 计算机不间断电源 ⑼ 应急照明
⑷ 输变电站、开关控制和事故照明   ⑽ 便携式电器及采矿系统
⑸ 消防、安全及报警监测       ⑾ 交通及航标信号灯
⑹ 汽车电池及船用起动

电解液的损耗 电池虽然都是密封的,但在其使用寿命期间会损失一些电解液,特别是如果由于粗心不适当充电产生过大的气体压力以致出现气体排放。一旦出现气体排放,在镍基电池上的弹簧加压的排气密封垫可能难以完好地再封闭,从而造成密封垫周围淀积起白色粉末,电解液的损耗终将降低电池容量。 渗透或是在气阀调节的铅酸电池(VRCA)中电解液的损耗是一个久已存在的问题。其原因是过充以及在高温下工作造成的。用加水补充电解液的损耗成效是有限的,虽然可以部分地恢覆电池容量,但电池的性能将不甚可靠。 如果正确地充电,锂离子电池应不产生气体以致出现排气的问题。但是锂离子电池在某些条件下也会产生内部压力。某些电池内部配置——电路开关,当电池压力到某个临界值时,该开关可切断电流。另外有些电池则设计成一种可控的方式或打开安全隔膜以释放气体。 短路的电池 电池生产厂商常常无法解释当电池还处于较新的状态时,为何某些电池显示出高的漏电率或者出现电路。其可疑的原因是电池在制造过程中可能混入了外来颗粒杂质。另一种是电极上的粗糙点造成对隔膜的损伤。因此对电池应改善其制造过程,这可大大地减少电池的“早期失效率”(infantmortality)。 深度放电造成电池的极性反转也会导致电池短路。如果镍基电池在大电流放电至 放光时,这种状态也可能出现。高的反向电流可造成性的电短路。另一种原因是由不可控的晶状体的形成导致的隔膜损伤,这就是所谓的记忆效应。 采用瞬时大电流脉冲试图修复短路的蓄电池,其成功率极为有限。这种短路可能暂时被蒸发,但是对隔膜材料的损伤依然存在。这种修复后的电池常表现有高的放电率并且短路还会再次出现。在一个已老化的电池组中更换某个短路电池并非可取。除非这个新电池在电池电压和容量上与电池组中的其它电池性能一样是匹配的。电池的匹配 即使采用了现代化的生产制造技术,电池的容量也不可能准确预测,尤其是对镍基电池。制造过程中,将每个电池以其容量的大小加以检测并分类。高容量“A”类电池通常以级价格按特殊用途电池出售;中等容量“B”类电池应用于工业和商业产品;低端“C”类电池则以廉价出售。通过循环充放电并不能改善低端类别电池的容量。购买 的可充电电池所得的是低电池容量。 在以多个电池组成的电池组中,电池的匹配应控制在±2.5%以内。

太阳能胶体蓄电池2V3000AH通信光伏储能

在组成电池个数多的电池组中,以及需输出大负载电流和在低温下工作的电池组,需要更严格的电池容差控制。在一个新的电池组中的各个电池如果稍有小的失配,在经过数次充电循环后,将能互相平衡自行适应。电池之间能否很好地平衡适应,关系到电池组是否具有较长的使用寿命。 为何电池的匹配如此重要?这是因为一个“弱”电池含有的容量较小,它比“强”电池更快地放充电。这种放电过程的不平衡导致“弱”电池在放电经过低电压时,电池极性会反转。在充电时“弱”电池在被充过程中首先进入发热过充状态,而此时较强的电池仍能正常地接受充电并不发热。在这两种情况下“弱”电池处于不利的状态,使它变得更“弱”而导致严重的失配。电池比低质量电池的电容量更为一致也更为均衡。对大功率工具应选用高质量电池,因其在大负荷和 的温度环境下可有高的耐久性。虽付出高成本,然而其回报是电池组有更长的寿命。 锂基电池从生产线上下来时其本质性能就匹配得很好。在电池组内部各单个电池需符合严格的容差是非常重要的。电池组所有的电池必须在统一的时间之内达到充电满量,而且在放电终结时达到同样的门限电压。电池组内置的保护电路应在电池出现不正常的工作状态时起到安全保护作用。电池的性能退化一方面是使用和老化的自然结果,另一方面则由于缺乏维护、苛刻的使用环境以及不良的充电操作等等加速其劣化。下面将探讨充电电池各种难以克服的问题、其原因及弥补这些问题的方法。 高的自放电率 各种电池都存在自放电,但使用不当会促使这种状态的发展。自放电率呈渐近线规律,高的放电率出现在刚充电之后,然后逐渐减小。 镍基电池表现出较高的自放电率。在正常环境温度下,新的镍镉电池充电后,在个24h期间其电高量约减少10%。此后,自放电率稳定至每个月约10%。通常温度较高,其放电率也增大。一般的准则是:温度每升高10℃自放电率增大1倍。镍金属氢化物电池的自放电率比镍镉电池约大30%。 镍基电池经过数百次循环后其自放电率也增大,电池的极板开始膨胀从而更紧密地挤压电极之间的隔膜,形成金属树枝状晶体,这是结晶体生长的结果(记忆效应),从而损坏了电池隔膜,增大了自放电率。如果镍基电池在24h的自放电达30%时,应予弃用 镍离子电池在充电后的个24h的自放电率为5%。此后下降至每月1%-2%,电池的安全保护电路增加约3%。高的循环次数和老化对锂基电池的自放电率没有影响。铅酸电池的自放电率约每月5%或者每年50%,重复性的深度循环充放电则使自放电增大。 电池自放电的百分率可用电池分析仪加以测定,但此程序需要数小时。测得的电池内阻常可反映电池的内阻是否过高。此参数可用阻抗计测量或用电池分析仪的欧姆测试程序。


在线咨询
联系电话

13716151989